

EsPCEx

PROVA 2

Matemática

Curso EsPCEx 2021

É proibida a reprodução total ou parcial do conteúdo desse material sem prévia autorização.

Todos os direitos reservados a EU MILITAR Nova Iguaçu-RJ suporte@eumilitar.com

PROVA DE MATEMÁTICA

Escolha a única alternativa correta, dentre as opções apresentadas, que responde ou completa cada questão, assinalando-a, com caneta esferográfica de tinta azul ou preta, no Cartão de Respostas.

O volume de uma esfera inscrita em um cubo com volume 216 cm3 é igual a

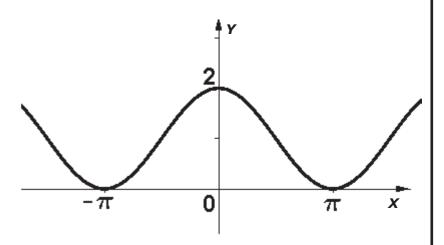
[A] 38π cm³.

[B] $36\pi \text{ cm}^3$.

[C] 34π cm³. [D] 32π cm³.

[E] 30π cm³.

Dentre as alternativas a seguir, aquela que apresenta uma função trigonométrica de período 2π , cujo gráfico está representado na figura abaixo é


[A]
$$f(x)=1-sen(\pi-x)$$
.

[B]
$$f(x)=1+\cos(\pi-x)$$
.

[C]
$$f(x)=2-cos(\pi+x)$$
.

[D]
$$f(x)=2-sen(\pi+x)$$
.

[E]
$$f(x)=1-cos(\pi-x)$$
.

Desenho Ilustrativo Fora de Escala

	3	Seja A o maior subconjunto de $ R $ no qual está definida a função real f(x) = $\frac{1}{2}$		
C	<i>x</i> +5			

[A]
$$A = /R - \{-5\}$$
 e $B = /R_+ - \{10\}$. [B] $A = /R - \{-5\}$ e $B = /R_+$. [C] $A = /R - \{-5\}$ e $B = /R$.

[B]
$$A = /R - \{-5\}$$
 e $B = /R_+$

[C]
$$A = /R - \{-5\}$$
 e $B = /R$

[D]
$$A = /R - \{-5,5\}$$
 e $B = /R_+$.

[E]
$$A = /R - \{-5,5\}$$
 e $B = /R_{+} - \{10\}$.

Enrico guardou moedas em um cofrinho por um certo período de tempo e, ao abri-lo, consta-

I. o cofrinho contém apenas moedas de R\$ 0,25, R\$ 0,50 e R\$ 1,00.

II. a probabilidade de retirar uma moeda de R\$ 0,25 é o triplo da probabilidade de retirar uma moeda de R\$ 0,50.

III. se forem retiradas 21 moedas de R\$ 0,25 desse cofrinho, a probabilidade de retirar uma moeda de R\$ 0,50 passa a ser $\frac{9}{}$.

IV. se forem retiradas 9 moedas de R\$ 0,50 desse cofrinho, a probabilidade de retirar uma moeda de R\$ 1,00 passa a ser _____

Diante dessas constatações, podemos afirmar que a quantidade de moedas de R\$ 0,25 nesse cofrinho era

[A] 27.

[B] 32.

[C] 33.

[D] 81.

[E] 108.

5 A equação log₃ x=1+12log_x3 tem duas raízes reais. O produto dessas raízes é

[A]0.

 $[B]\frac{1}{3}$. $[C]\frac{3}{2}$.

[D] 3.

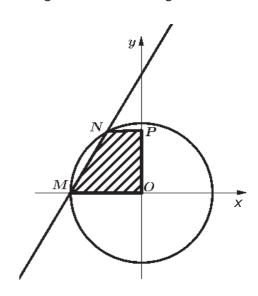
[E] 9.

A equação da reta tangente ao gráfico da função $f(x) = x^2 - 6x + 1$, no ponto (4,-7), é igual a

[A] y = -2x + 1. [B] y = 3x - 19. [C] y = x - 11. [D] y = -3x + 5. [E] y = 2x - 15.

Na figura abaixo, a equação da circunferência é x²+y²=3 e a reta suporte do segmento MN tem coeficiente angular igual a $\sqrt{3}$.

O volume do sólido gerado pela rotação do trapézio MNPO em relação ao eixo y é

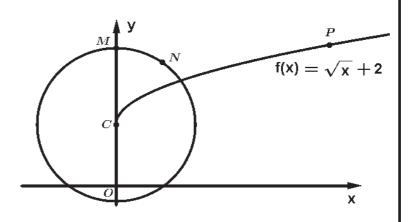

[A]
$$\frac{3\pi}{8}$$

[B]
$$\frac{21\pi}{8}$$

[A]
$$\frac{3\pi}{8}$$
. [B] $\frac{21\pi}{8}$. [C] $\frac{9\pi\sqrt{3}}{8}$. [D] $\frac{24\pi\sqrt{3}}{8}$. [E] $\frac{63\pi\sqrt{3}}{8}$.

$$[D]\frac{24\pi\sqrt{3}}{8}$$

$$[E] \frac{63\pi\sqrt{3}}{8}$$
.


Desenho Ilustrativo Fora de Escala

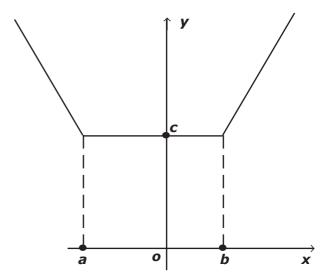
Os pontos M(0,y), com $y \ge 0$ e $N(\sqrt{3},4)$ pertencem a uma circunferência de centro C(0,2). Considere o ponto P, do gráfico de $f(x) = \sqrt{x} + 2$, que possui ordenada y igual à do ponto M.

A abscissa x do ponto P é igual a

$$[A]\sqrt{7}$$
.

[A]
$$\sqrt{7}$$
. [B] $\sqrt{7}$ + 2. [C] 7. [D] 9. [E] 12.

Desenho Ilustrativo Fora de Escala


9	 Sabendo que o gráfico a seguir representa a função real f(x)= x-2 + x+3 , então o valor de
	b + c é igual a

[A] -7.

[B] -6.

[C] 4.

[D] 6. [E] 10.

Desenho Ilustrativo Fora de Escala

0 número de raízes reais da equação $2\cos^2 x + 3\cos x + 1 = 0$ no intervalo $]0,2\pi$ [é

[A] 0.

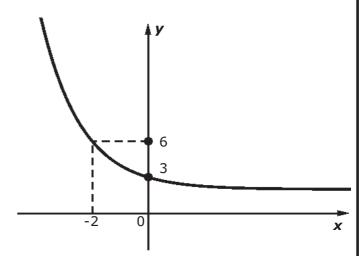
[B] 1.

[C] 2.

[D] 3.

[E]4.

11 A figura mostra um esboço do gráfico da função $f(x)=a^x+b$, com a e b reais, a>0, $a\ne 1$ e $b\ne 0$.


[A]
$$-\frac{3}{4}$$

[B]
$$-\frac{15}{4}$$

[C]
$$-\frac{1}{4}$$

[D]
$$-\frac{7}{6}$$
.

[A]
$$-\frac{3}{4}$$
. [B] $-\frac{15}{4}$. [C] $-\frac{1}{4}$. [D] $-\frac{7}{6}$. [E] $-\frac{35}{6}$.

Desenho Ilustrativo Fora de Escala

Considere a função f: $/R \rightarrow /R$ definida por f(x)= $(\sqrt{3})^{4+2 \text{sen} 3 \text{x}}$ e a função g: $/R \rightarrow /R$, definida por $g(x) = \left(\frac{\sqrt{3}}{3}\right)^{1+3\cos 2x}$. O produto entre o valor mínimo de f e o valor máximo de g é igual a

- $[A]\frac{1}{81}$. $[B]\frac{1}{9}$.
- [C] 1.
- [D] 9.
- [E] 81.

Uma fábrica de tratores agrícolas, que começou a produzir em 2010, estabeleceu como meta produzir 20.000 tratores até o final do ano de 2025. O gráfico abaixo mostra as quantidades de tratores produzidos no período 2010-2017.

Admitindo que a quantidade de tratores produzidos evolua nos anos seguintes segundo a mesma razão de crescimento do período 2010-2017, é possível concluir que a meta prevista

- [A] deverá ser atingida, sendo superada em 80 tratores.
- [B] deverá ser atingida, sendo superada em 150 tratores.
- [C] não deverá ser atingida, pois serão produzidos 1.850 tratores a menos.
- [D] não deverá ser atingida, pois serão produzidos 150 tratores a menos.
- [E] não deverá ser atingida, pois serão produzidos 80 tratores a menos.

Desenho Ilustrativo Fora de Escala

Os centros de dois círculos distam 25 cm. Se os raios desses círculos medem 20 cm e 15 cm, a medida da corda comum a esses dois círculos é

[A]12 cm.

[B] 24 cm.

[C] 30 cm.

[D] 32 cm.

[E] 36 cm.

15	Em um triângulo <i>ABC, BC</i> =12 cm e a mediana relativa a esse lado mede 6 cm. Sabendo-se que
	ediana relativa ao lado AB mede 9 cm, qual a área desse triângulo?

- [A] $\sqrt{35}$ cm². [B] $2\sqrt{35}$ cm². [C] $6\sqrt{35}$ cm². [D] $\frac{\sqrt{35}}{2}$ cm². [E] $3\sqrt{35}$ cm².

Uma hipérbole tem focos $F_1(-5,0)$ e $F_2(5,0)$ e passa pelos pontos P(3,0) e Q(4,y), com y>0. O triângulo com vértices em F₁, P e Q tem área igual a

$$[A] \frac{16\sqrt{7}}{3}$$

[B]
$$\frac{16\sqrt{7}}{5}$$

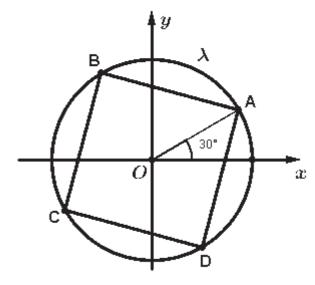
[C]
$$\frac{32\sqrt{7}}{3}$$

[A]
$$\frac{16\sqrt{7}}{3}$$
. [B] $\frac{16\sqrt{7}}{5}$. [C] $\frac{32\sqrt{7}}{3}$. [D] $\frac{8\sqrt{7}}{3}$. [E] $\frac{8\sqrt{7}}{5}$.

$$[E] \frac{8\sqrt{7}}{5}$$

Considere o conjunto de números naturais {1,2,, 15}. Formando grupos de três números distintos desse conjunto, o número de grupos em que a soma dos termos é ímpar é					
	[A] 168.	[B] 196.	[C] 224.	[D] 227.	[E] 231.
18 p(x)	Sabendo que d =x ⁵ -2x ⁴ -x+2, po	o número complex odemos afirmar qu	ko i (sendo i a uni e p(x) tem	dade imaginária)	é raiz do polinômio
	[A] duas raízes ig	guais a <i>i</i> , uma raiz ra	icional e duas raízes i	rracionais.	
	[B] <i>i</i> e <i>-i</i> como ra	ízes complexas e trê	ès raízes irracionais.		
	[C] uma raiz com	nplexa <i>i</i> e quatro raíz	es reais.		
	[D] <i>i</i> e - <i>i</i> como ra	aízes complexas e trê	ês raízes inteiras.		
	[E] três raízes sir	mples e uma raiz dup	ola.		

No plano complexo, temos uma circunferência λ de raio 2 centrada na origem. Sendo ABCD um quadrado inscrito à λ , de acordo com a figura abaixo, podemos afirmar que o número complexo que representa o vértice B é


[A]
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
.

[B] -
$$\sqrt{3}$$
 - *i*.

[C]
$$-1+\sqrt{3}i$$
.

[A]
$$-\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, [B] $-\sqrt{3} - i$, [C] $-1 + \sqrt{3}i$. [D] $-\frac{1}{2} - \frac{\sqrt{3}}{2}i$, [E] $-\frac{\sqrt{3}}{2} + \frac{1}{2}i$.

[E]
$$-\frac{\sqrt{3}}{2} + \frac{1}{2}i$$
.

Desenho Ilustrativo Fora de Escala

Considere uma circunferência de centro O e raio 1 cm tangente a uma reta r no ponto Q. A medida do ângulo $M\hat{O}Q$ é 30°, onde M é um ponto da circunferência. Sendo P o ponto da reta r tal que PM é paralelo a OQ, a área (em cm²) do trapézio OMPQ é

[A]
$$\frac{1}{2} - \frac{\sqrt{3}}{8}$$
. [B] $2 - \frac{\sqrt{3}}{2}$. [C] $1 + \frac{\sqrt{3}}{2}$. [D] $2 - \frac{\sqrt{3}}{8}$. [E] $\frac{\sqrt{3}}{2}$.

[B] 2 -
$$\frac{\sqrt{3}}{2}$$

[C]
$$1 + \frac{\sqrt{3}}{2}$$
.

[D]
$$2 - \frac{\sqrt{3}}{8}$$
.

[E]
$$\frac{\sqrt{3}}{2}$$

GABARITO

<u>Matemática</u>

1	В
2	E
3	В
4	D
5	D
6	E
7	В
8	С
9	С
10	D
11	В
12	D
13	Е
14	В
15	С
16	A
17	С
18	D
19	С
20	A

Todos os direitos reservados a EU MILITAR Nova Iguaçu-RJ | suporte@eumilitar.com

Diagramação:

Clique nos ícones abaixo para acessas as nossas redes.

Clique nos ícones abaixo para acessas as nossas redes.

