

EsPCEx

PROVA 1
Física

Curso EsPCEx 2021

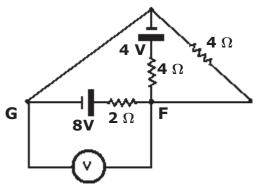
É proibida a reprodução total ou parcial do conteúdo desse material sem prévia autorização.

Todos os direitos reservados a EU MILITAR Nova Iguaçu-RJ suporte@eumilitar.com

PROVA DE FÍSICA

Escolha a única alternativa correta, dentre as opções apresentadas, que responde ou completa cada questão, assinalando-a, com caneta esferográfica de tinta azul ou preta, no Cartão de Respostas.

O desenho abaixo representa um circuito elétrico composto por gerador, receptor, condutores, um voltímetro (V), todos ideais, e resistores ôhmicos. O valor da diferença de potencial (ddp), entre os pontos F e G do circuito, medida pelo voltímetro, é igual a


[A] 1,0 V

[B] 3,0 V

[C] 4,0 V

[D] 5,0 V

[E] 8,0 V

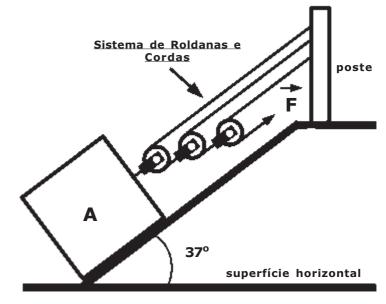
Desenho Ilustrativo Fora de Escala

Um bloco A de massa 100 kg sobe, em movimento retilíneo uniforme, um plano inclinado que forma um ângulo de 37º com a superfície horizontal. O bloco é puxado por um sistema de roldanas móveis e cordas, todas ideais, e coplanares. O sistema mantém as cordas paralelas ao plano inclinado enquanto é aplicada a força de intensidade F na extremidade livre da corda, conforme o desenho abaixo.

Todas as cordas possuem uma de suas extremidades fixadas em um poste que permanece imóvel quando as cordas são tracionadas.

Sabendo que o coeficiente de atrito dinâmico entre o bloco A e o plano inclinado é de 0,50, a intensidade da força F é

Dados: sen 37° = 0,60 e cos 37° = 0,80 Considere a aceleração da gravidade igual a 10 m/s².


[A] 125 N

[B] 200 N

[C] 225 N

[D] 300 N

[E] 400 N

Desenho Ilustrativo Fora de Escala

O espelho retrovisor de um carro e o espelho em portas de elevador são, geralmente, espelhos esféricos convexos. Para um objeto real, um espelho convexo gaussiano forma uma imagem

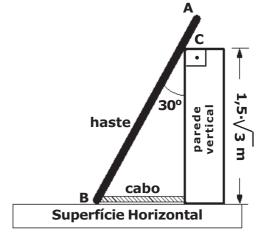
- [A] real e menor.
- [B] virtual e menor.
- [C] real e maior.
- [D] virtual e invertida.
- [E] real e direita.

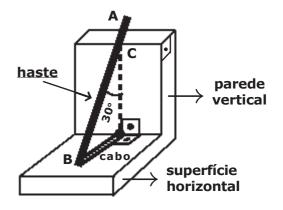
Uma haste AB rígida, homogênea com 4 m de comprimento e 20 N de peso, encontra-se apoiada no ponto C de uma parede vertical, de altura $1.5 \cdot \sqrt{3}$ m, formando um ângulo de 30° com ela, conforme representado nos desenhos abaixo.

Para evitar o escorregamento da haste, um cabo horizontal ideal encontra-se fixo à extremidade da barra no ponto B e a outra extremidade do cabo, fixa à parede vertical.

Desprezando todas as forças de atrito e considerando que a haste encontra-se em equilíbrio estático, a força de tração no cabo é igual a

Dados: sen 30° = cos 60° = 0,5 e sen 60° = cos 30° = $\frac{\sqrt{3}}{2}$


[A]
$$\frac{7}{3} \cdot \sqrt{3}$$
 N


[B]
$$\frac{8}{3} \cdot \sqrt{3}$$
 N

[C]
$$\frac{10}{3}$$
 $\sqrt{3}$ N

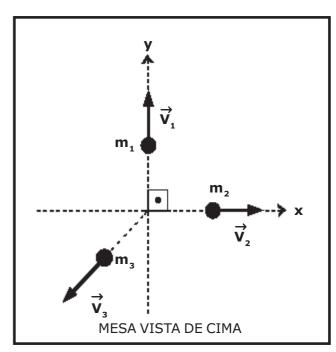
[D]
$$6 \cdot \sqrt{3}$$
 N

[E]
$$\frac{20}{3} \cdot \sqrt{3}$$
 N

Desenhos Ilustrativos Fora de Escala

Uma granada de mão, inicialmente em repouso, explode sobre uma mesa indestrutível, de superfície horizontal e sem atrito, e fragmenta-se em três pedaços de massas m_1 , m_2 e m_3 que adquirem velocidades coplanares entre si e paralelas ao plano da mesa.

Os valores das massas são $m_1 = m_2 = m e m_3 = \frac{m}{2}$. Imediatamente após a explosão, as massas $m_1 e m_2$ adquirem as velocidades $\overrightarrow{V}_1 e \overrightarrow{V}_2$, respectivamente, cujos módulos são iguais a \lor , conforme o desenho abaixo.


Desprezando todas as forças externas, o módulo da velocidade $\overrightarrow{v}_{_3}$, imediatamente após a explosão é

$$[A] \frac{\sqrt{2}}{4}$$
 v

[B]
$$\frac{\sqrt{2}}{2}$$
 v

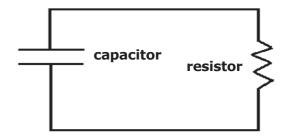
$$[C]\sqrt{2}$$
 v

$$[D] \frac{3}{2} \cdot \sqrt{2} v$$

Desenho Ilustrativo Fora de Escala

Um capacitor de capacitância igual a 2 μ F está completamente carregado e possui uma diferença de potencial entre suas armaduras de 3 V. Em seguida, este capacitor é ligado a um resistor ôhmico por meio de fios condutores ideais, conforme representado no circuito abaixo, sendo completamente descarregado através do resistor.

Nesta situação, a energia elétrica total transformada em calor pelo resistor é de


[A] 1,5·10⁻⁶ J

[B] 6,0·10⁻⁶ J

[C] 9,0·10⁻⁶ J

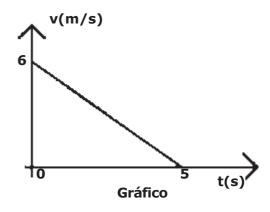
[D] 12,0·10⁻⁶ J

[E] 18,0·10⁻⁶ J

Desenho Ilustrativo Fora de Escala

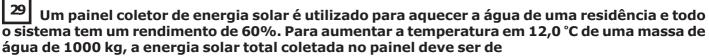
Um bloco de massa igual a 1,5 kg é lançado sobre uma superfície horizontal plana com atrito com uma velocidade inicial de 6 m/s em t_1 = 0 s. Ele percorre uma certa distância, numa trajetória retilínea, até parar completamente em t_2 =5 s, conforme o gráfico abaixo.

O valor absoluto do trabalho realizado pela força de atrito sobre o bloco é



[B] 9,0 J

[C] 15 J


[D] 27 J

[E] 30 J

Uma carga elétrica puntiforme, no interior de um campo magnético uniforme e constante, dependendo de suas condições cinemáticas, pode ficar sujeita à ação de uma força magnética. Sobre essa força pode-se afirmar que

- [A] tem a mesma direção do campo magnético, se a carga elétrica tiver velocidade perpendicular a ele.
- [B] é nula se a carga elétrica estiver em repouso.
- [C] tem máxima intensidade se o campo magnético e a velocidade da carga elétrica forem paralelos.
- [D] é nula se o campo magnético e a velocidade da carga elétrica forem perpendiculares.
- [E] tem a mesma direção da velocidade da carga elétrica.

Dado: considere o calor específico da água igual a 4,0 $\frac{J}{g \cdot {}^{\circ}C}$.

- [A] $2.8 \cdot 10^4 \text{ J}$
- [B] 4,8 · 10⁴ J
- [C] 8,0 · 10⁴ J
- [D] 4,8 · 10⁷ J
- [E] $8,0 \cdot 10^7 \text{ J}$

Uma partícula com carga elétrica negativa igual a -10-8 C encontra-se fixa num ponto do espaço. Uma segunda partícula de massa igual a 0,1 g e carga elétrica positiva igual a +10-8 C descreve um movimento circular uniforme de raio 10 cm em torno da primeira partícula. Considerando que elas estejam isoladas no vácuo e desprezando todas as interações gravitacionais, o módulo da velocidade linear da partícula positiva em torno da partícula negativa é igual a

Dado: considere a constante eletrostática do vácuo igual a $9 \cdot 10^9 \frac{N \cdot m^2}{C^2}$.

- [A] 0,3 m/s
- [B] 0,6 m/s
- [C] 0,8 m/s
- [D] 1,0 m/s
- [E] 1,5 m/s

Um operário, na margem A de um riacho, quer enviar um equipamento de peso 500 N para outro operário na margem B.

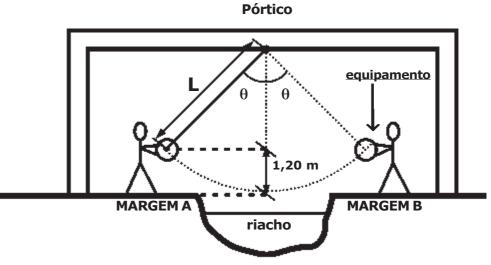
Para isso ele utiliza uma corda ideal de comprimento L=3m, em que uma das extremidades está amarrada ao equipamento e a outra a um pórtico rígido.

Na margem A, a corda forma um ângulo $\boldsymbol{\theta}$ com a perpendicular ao ponto de fixação no pórtico.

O equipamento é abandonado do repouso a uma altura de 1,20 m em relação ao ponto mais baixo da sua trajetória. Em seguida, ele entra em movimento e descreve um arco de circunferência, conforme o desenho abaixo e chega à margem B.

Desprezando todas as forças de atrito e considerando o equipamento uma partícula, o módulo da força de tração na corda no ponto mais baixo da trajetória é

Dado: considere a aceleração da gravidade g=10 m/s²


[A] 500 N

[B] 600 N

[C] 700 N

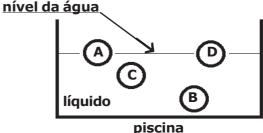
[D] 800 N

[E] 900 N

Desenho Ilustrativo Fora de Escala

Quatro objetos esféricos A, B, C e D, sendo respectivamente suas massas $m_{A'}$, $m_{B'}$, m_{C} e $m_{D'}$ tendo as seguintes relações m_{A} > m_{B} e m_{B} = m_{C} = $m_{D'}$, são lançados dentro de uma piscina contendo um líquido de densidade homogênea. Após algum tempo, os objetos ficam em equilíbrio estático. Os objetos A e D mantêm metade de seus volumes submersos e os objetos C e B ficam totalmente submersos conforme o desenho abaixo.

Sendo $V_{A'}$, $V_{B'}$, V_{C} e V_{D} os volumes dos objetos A, B, C e D, respectivamente, podemos afirmar que


$$[A] V_A = V_D > V_C = V_B$$

$$[B] V_{\Delta} = V_{D} > V_{C} > V_{R}$$

$$[C]V_A>V_D>V_B=V_C$$

$$[D] V_A < V_D = V_B = V_C$$

$$[E] V_A = V_D < V_C < V_B$$

Desenho Ilustrativo Fora de Escala

Final da Prova de Física

<u>Física</u>

21	D
22	Å
23	В
24	C
25	I
26	C
27	D
28	В
29	E
30	A
31	E
32	C

Todos os direitos reservados a EU MILITAR Nova Iguaçu-RJ | suporte@eumilitar.com

Diagramação:

Clique nos ícones abaixo para acessas as nossas redes.

Clique nos ícones abaixo para acessas as nossas redes.

